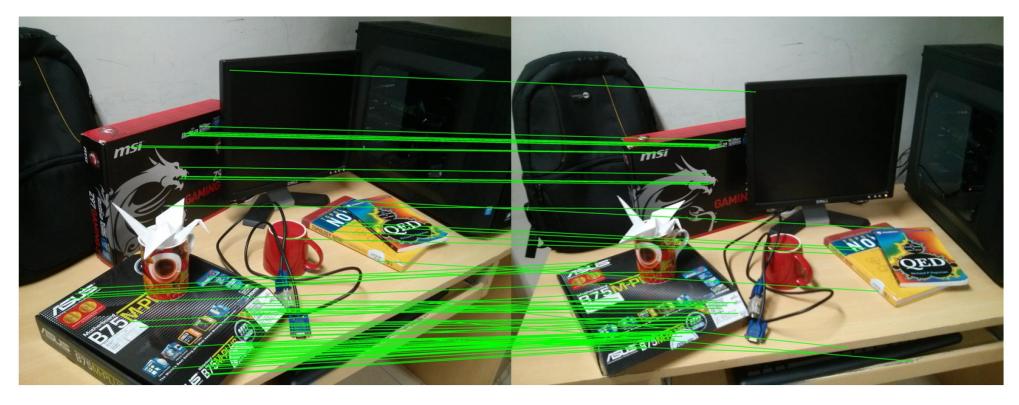


Feature Detection and Matching: Detectors and Descriptors II

CS 6384 Computer Vision
Professor Yapeng Tian
Department of Computer Science

Feature Detection and Matching

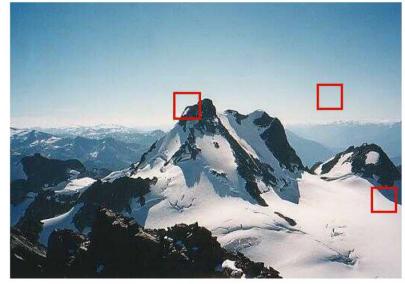


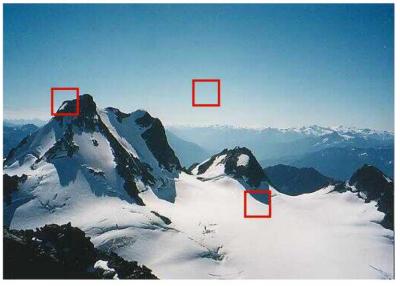
Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV'15

Applications: stereo matching, image stitching, 3D reconstruction, camera pose estimation, object recognition

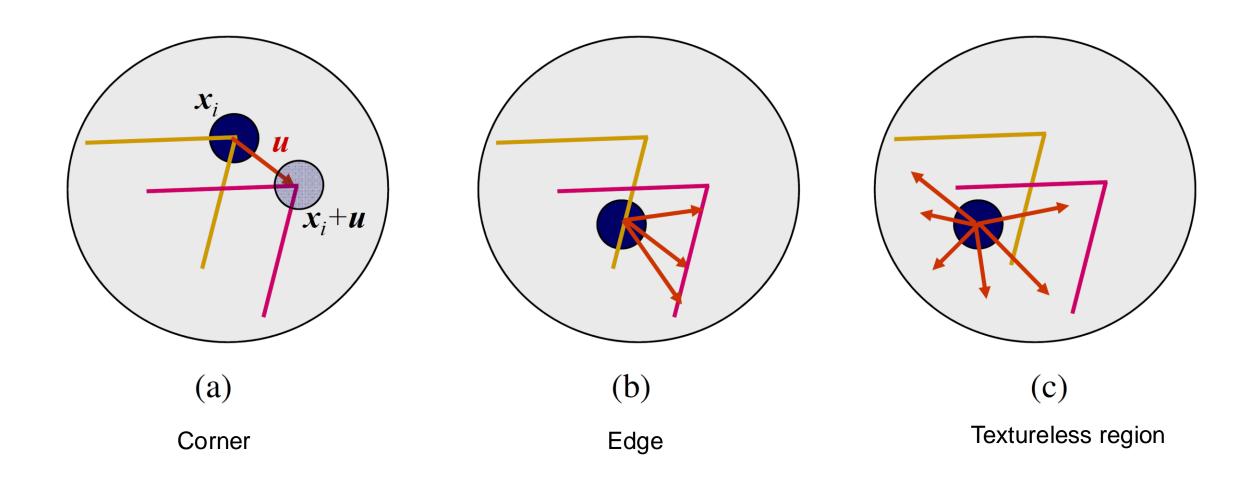
Feature Detectors

How to find image locations that can be reliably matched with images?





Feature Detectors

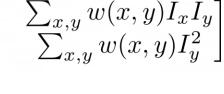


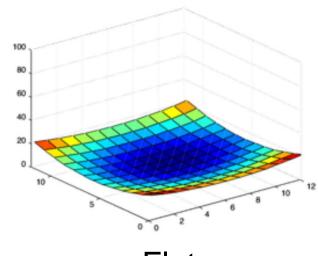
Harris Corner Detector

$$f(\Delta x, \Delta y) \approx \sum_{x,y} w(x,y) (I_x(x,y)\Delta x + I_y(x,y)\Delta y)^2$$

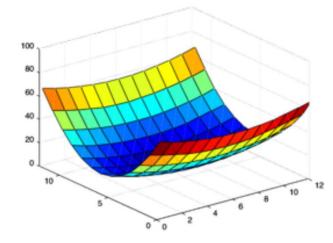
$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) M igg(rac{\Delta x}{\Delta y} igg)$$

$$f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \qquad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

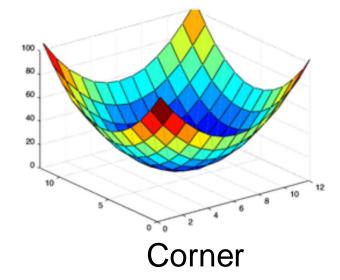




Flat



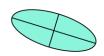
Edge



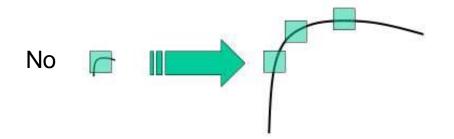
Invariance

Can the same feature point be detected after some transformation?

- Translation invariance
 Are Harris corners translation invariant?
- 2D rotation invariance
 Are Harris corners rotation invariant?

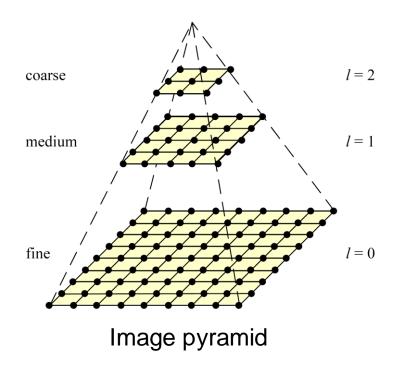


Are Harris corners scale invariant?



Scale Invariance

Solution 1: detection features in all scales, matching features in corresponding scale (for small scale change)

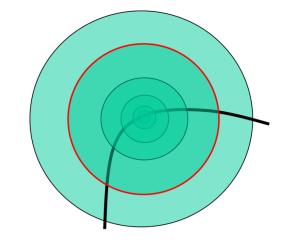


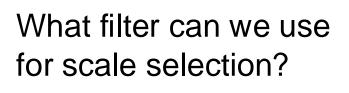
Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown, Szeliski, and Winder 2005)

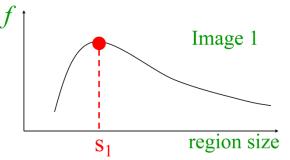
Scale Invariance

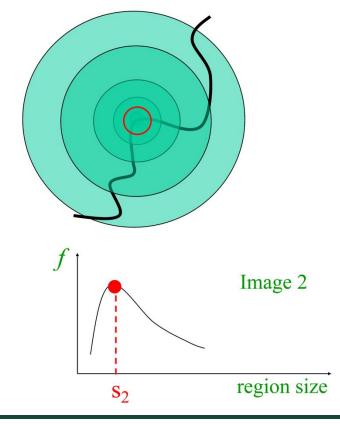
Solution 2: detect features that are stable in both location and scale

Intuition: Find local maxima in both position and scale





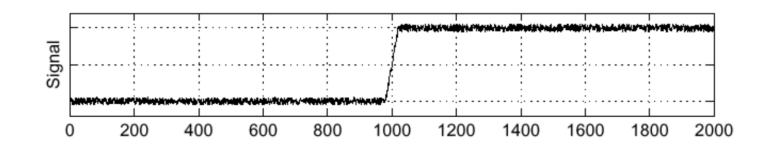


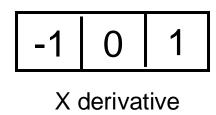


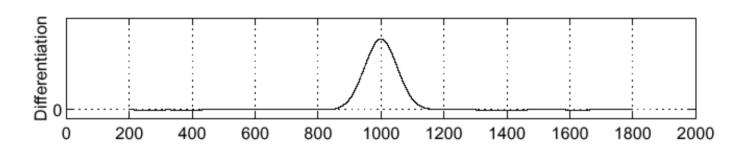
Recall Derivative Filter

Central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$



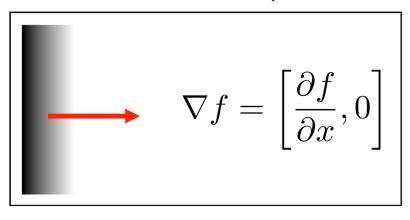




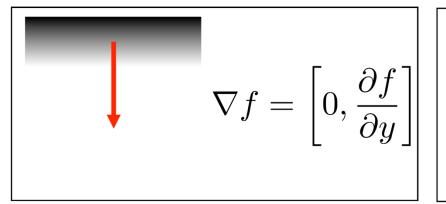
Find edge

Image Gradient

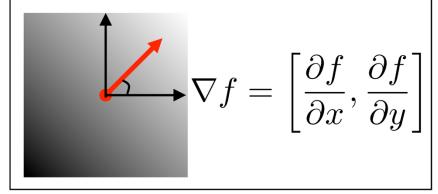
Gradient in x only



Gradient in y only



Gradient in both x and y



Gradient direction

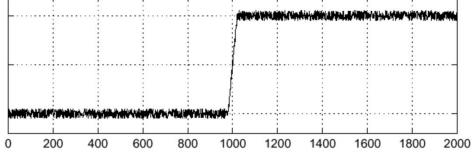
$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Gradient magnitude

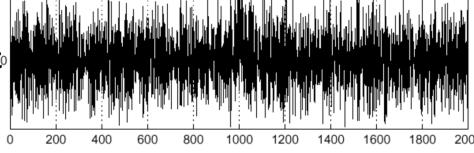
$$||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Signal Noises

Derivative filters are sensitive to noises



How to deal with noises?



Gaussian Filter

Smoothing

1D
$$g(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{x^2}{2\sigma^2}}$$

2D
$$g(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

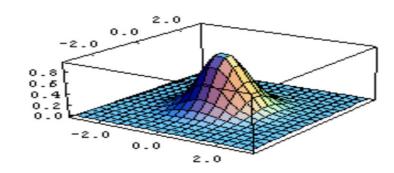
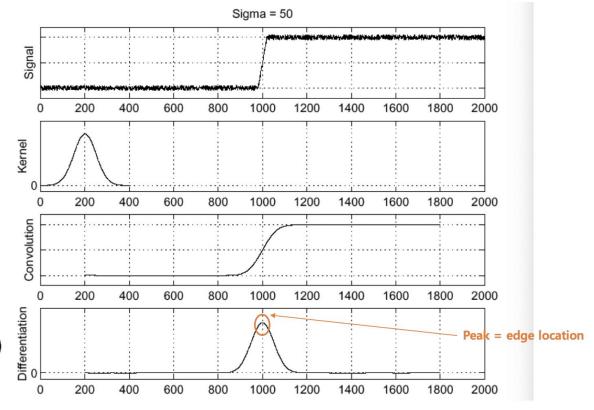


Image f

Gaussian Filter h

Convolution $h \star f$

Derivative $\frac{\partial}{\partial x}(h\star f)$

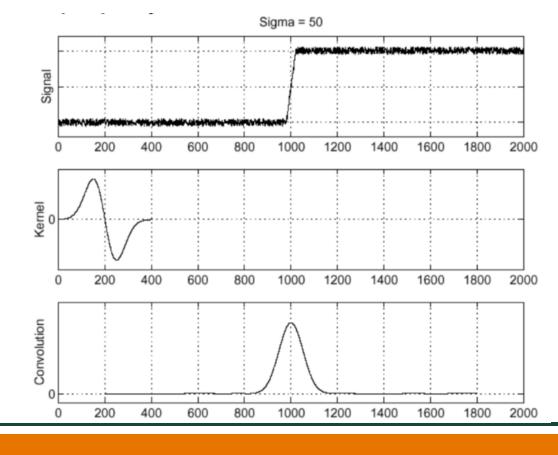


Derivative of Gaussian Filter

• Convolution is associative $\frac{\partial}{\partial x}(h\star f)=(\frac{\partial}{\partial x}h)\star f$

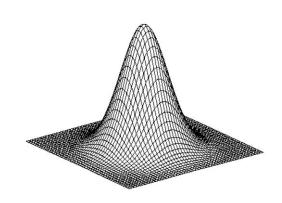
Smoothing and derivative

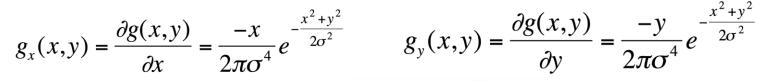
$$(\frac{\partial}{\partial x}h)\star f$$



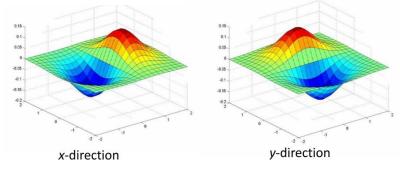
Derivative of Gaussian Filter

Convolution is associative
$$\frac{\partial}{\partial x}(h\star f)=(\frac{\partial}{\partial x}h)\star f$$

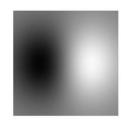


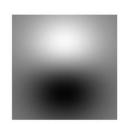


$$g_{y}(x,y) = \frac{\partial g(x,y)}{\partial y} = \frac{-y}{2\pi\sigma^{4}}e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$



$$g(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$





Laplace Filter

finite difference

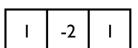
first-order
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

Derivative filter

second-order

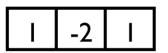
second-order finite difference
$$f''(x) \approx \frac{\delta_h^2[f](x)}{h^2} = \frac{\frac{f(x+h)-f(x)}{h} - \frac{f(x)-f(x-h)}{h}}{h} = \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

Laplace filter



Laplace Filter

$$\nabla^2 \mathbf{I} = \frac{\partial^2 \mathbf{I}}{\partial x^2} + \frac{\partial^2 \mathbf{I}}{\partial y^2}$$



ID Laplace filter

0	Ī	0
	-4	
0		0

2D Laplace filter

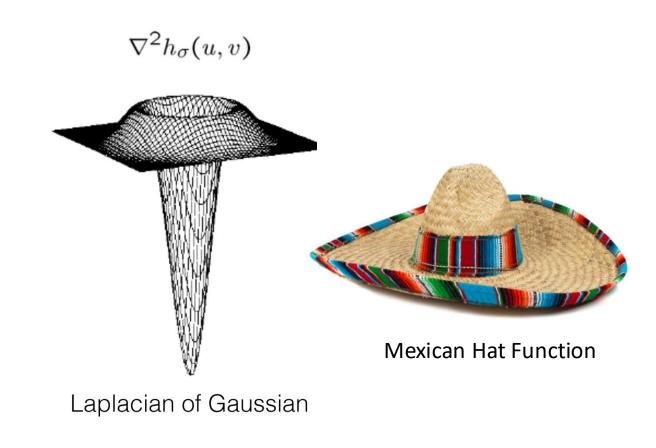
Laplacian of Gaussian Filter

$$\nabla^2 \mathbf{I} = \frac{\partial^2 \mathbf{I}}{\partial x^2} + \frac{\partial^2 \mathbf{I}}{\partial y^2}$$

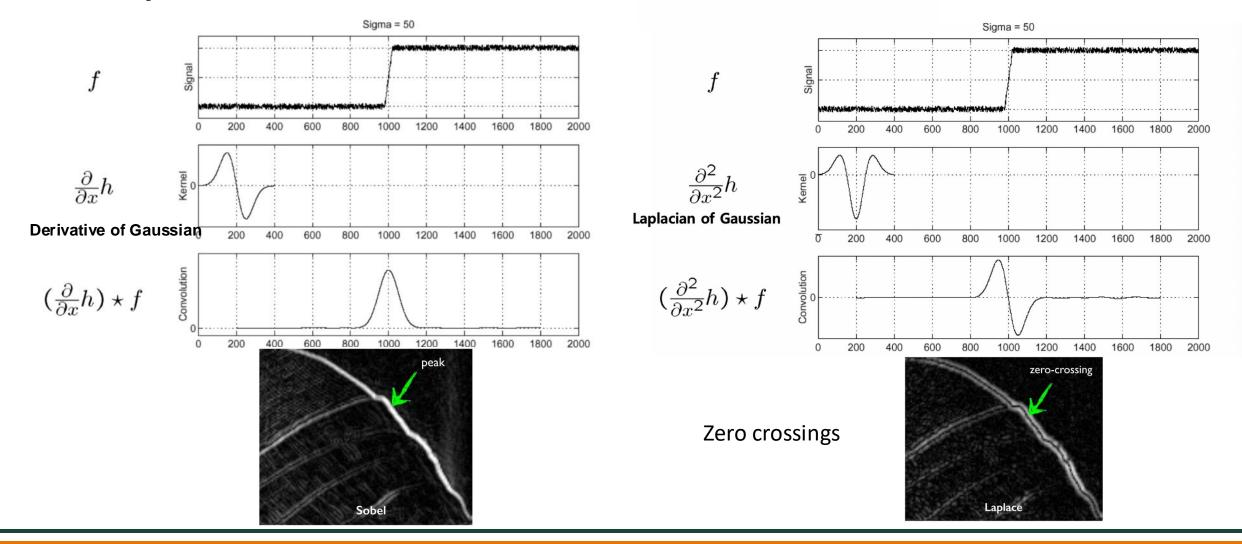
$$\nabla^2 \mathbf{I} \circ g = \nabla^2 g \circ \mathbf{I}$$

$$\nabla^{2} g = \frac{x^{2} + y^{2} - 2\sigma^{2}}{\sigma^{4}} g(x, y)$$

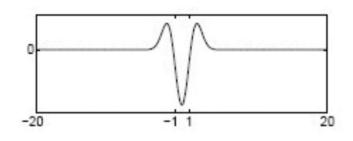
Smoothing and second derivative

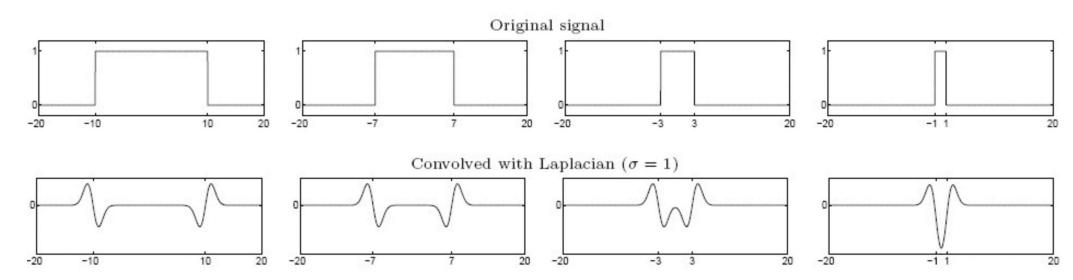


Laplacian of Gaussian Filter

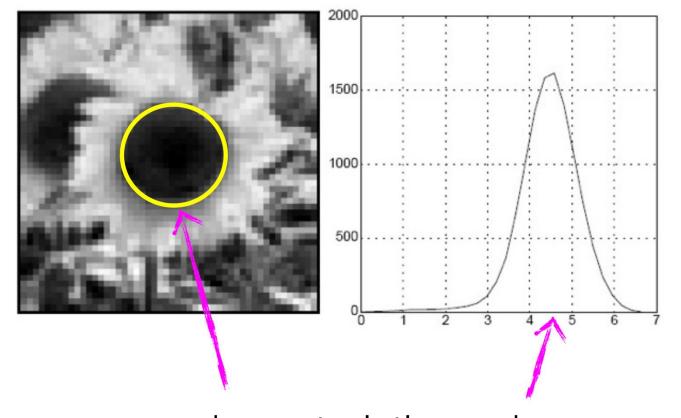


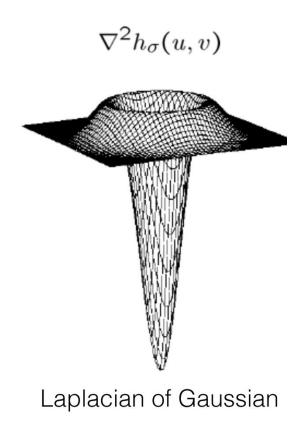






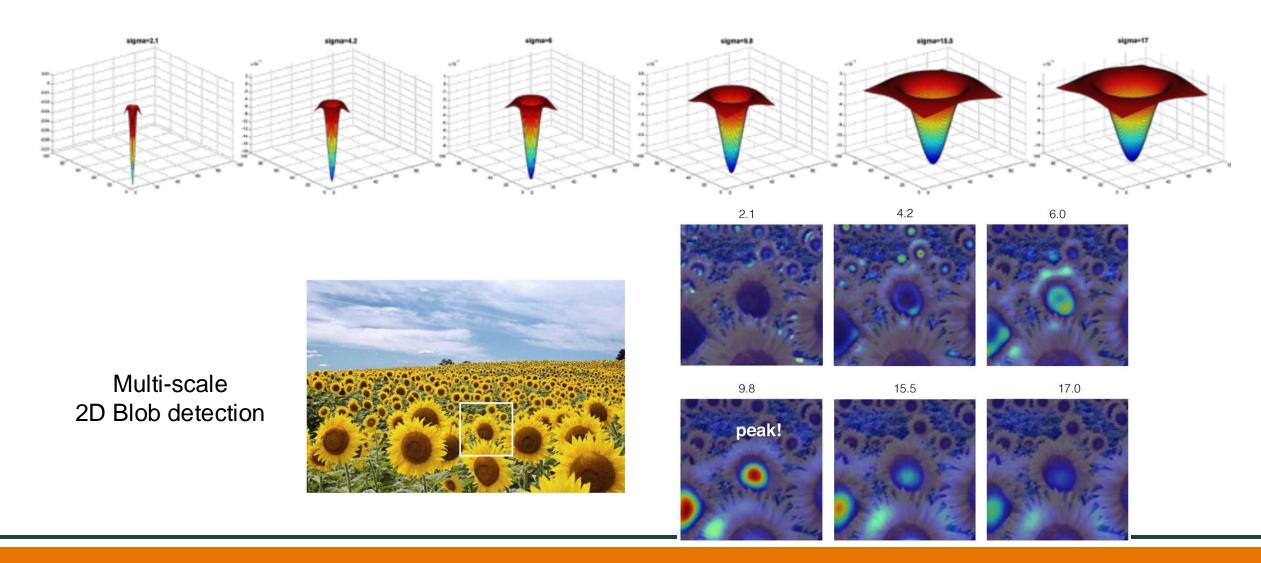
Highest response when the signal has the same **characteristic scale** as the filter

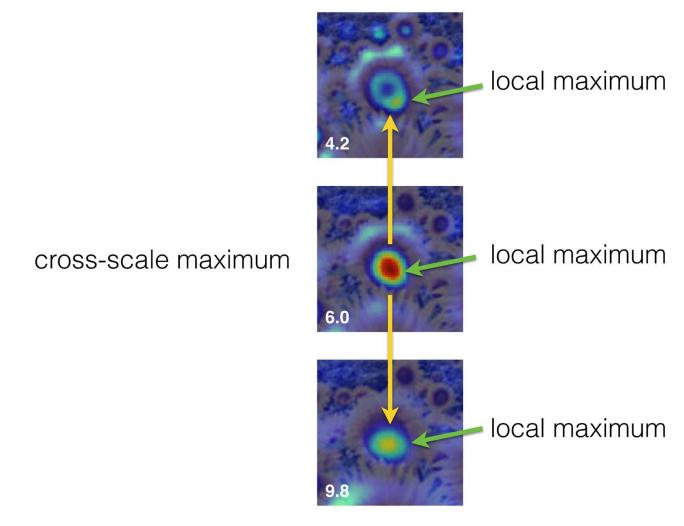




characteristic scale

Search over different scales σ

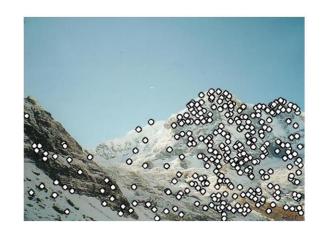


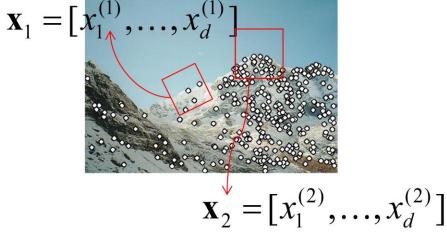


Scale Invariance Feature Transform (SIFT)

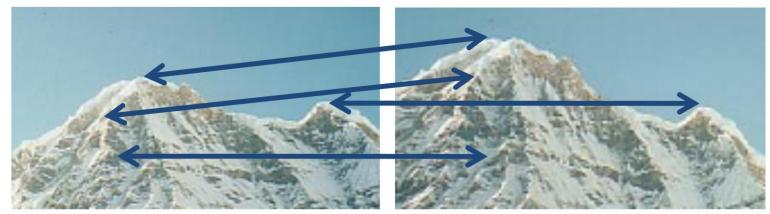
Keypoint detection

Compute descriptors





Matching descriptors



David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004

SIFT: Scale-space Extrema Detection

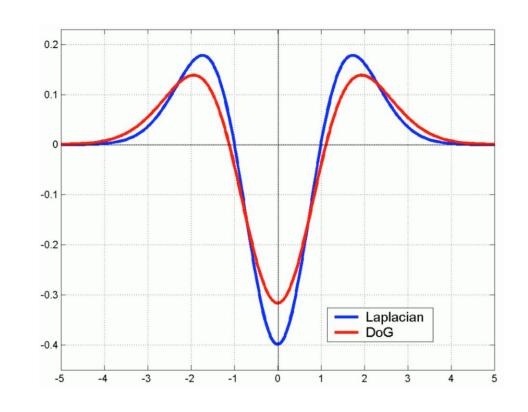
Difference of Gaussian (DoG)

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2}$$

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

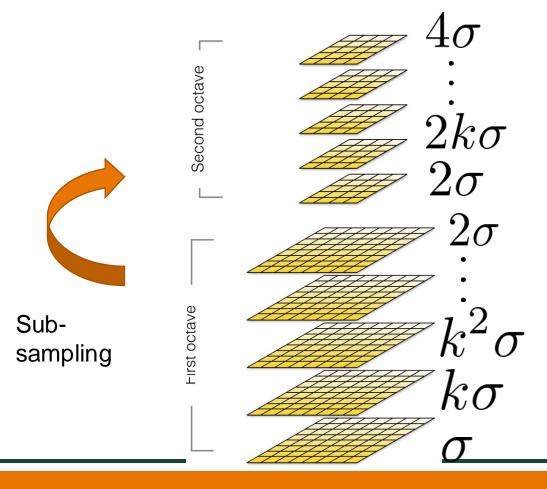
$$D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$
$$= L(x, y, k\sigma) - L(x, y, \sigma).$$

Approximate of Laplacian of Gaussian (efficient to compute)



SIFT: Scale-space Extrema Detection

Gaussian pyramid



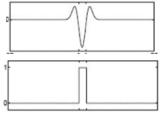
Gaussian filters

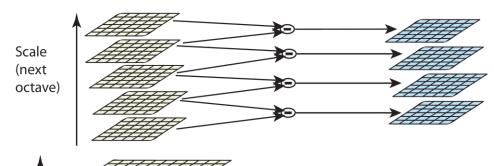
$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

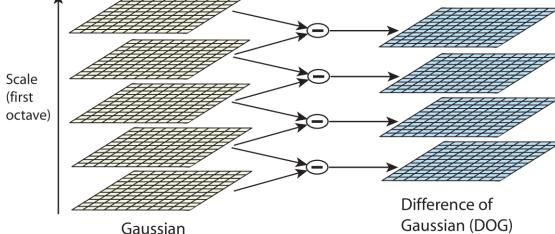
$$G_{\sigma_1} * G_{\sigma_2} = G_{\sigma} \quad \sigma^2 = \sigma_1^2 + \sigma_2^2$$

- Sub-sampling by a factor of 2
 - Multiple the Gaussian kernel deviation by 2

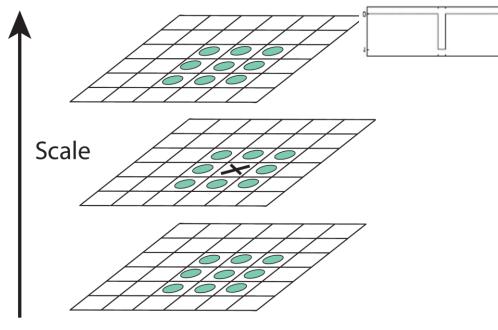
SIFT: Scale-space Extrema Detection







$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$
$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$



Maxima and minima of DoG images

$$\begin{array}{lcl} D(x,y,\sigma) & = & (G(x,y,k\sigma) - G(x,y,\sigma)) * I(x,y) \\ & = & L(x,y,k\sigma) - L(x,y,\sigma). \end{array}$$

SIFT Descriptor

Image gradient magnitude and orientation

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

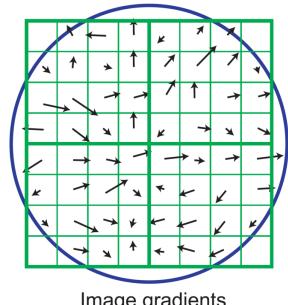


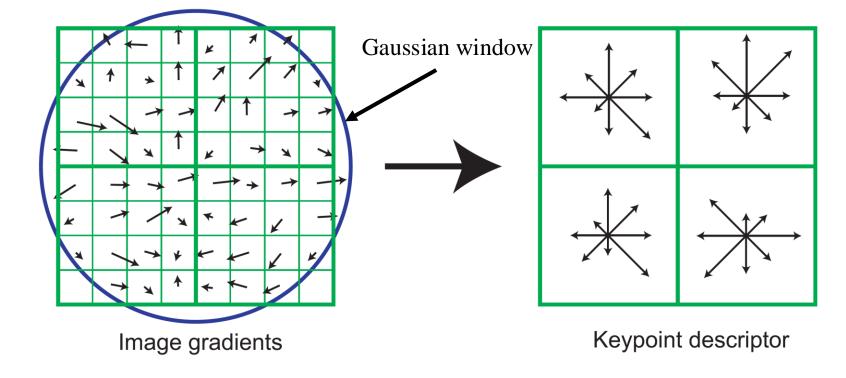
Image gradients

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$
 X-derivative
$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

SIFT Descriptor

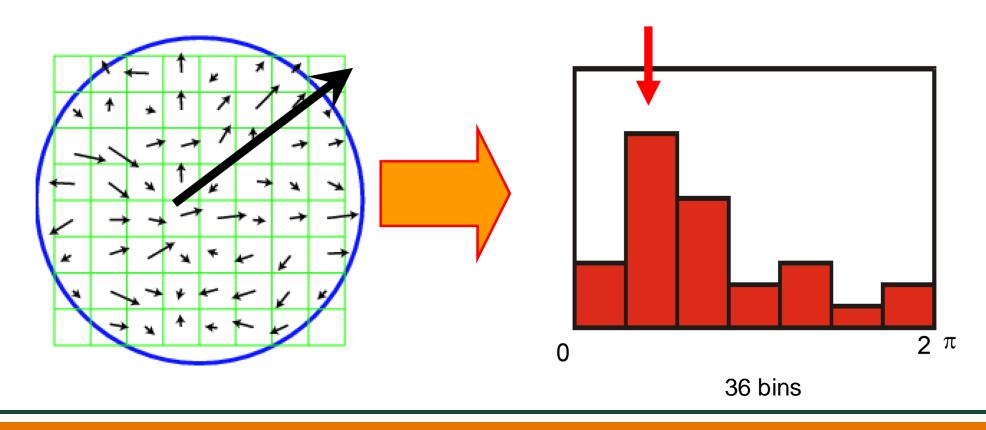
- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Using the scale of the keypoint to select the level of Gaussian blur for the image



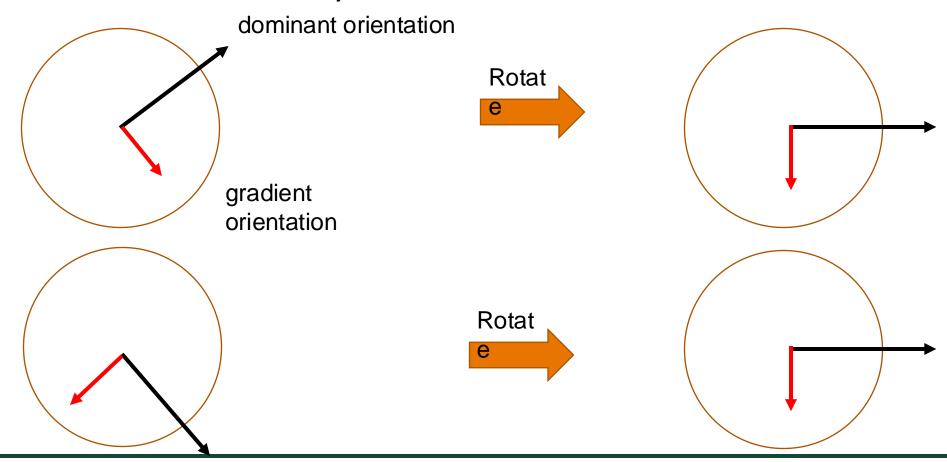
SIFT: Rotation Invariance

Rotate all orientations by the dominant orientation



SIFT: Rotation Invariance

Rotate all orientations by the dominant orientation



SIFT Properties

Can handle change in viewpoint (up to about 60 degree out of plane rotation)

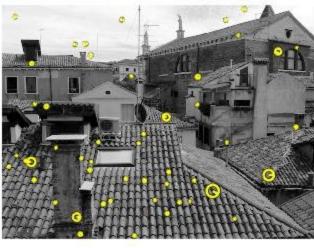
Can handle significant change in illumination

Relatively fast < 1s for moderate image sizes

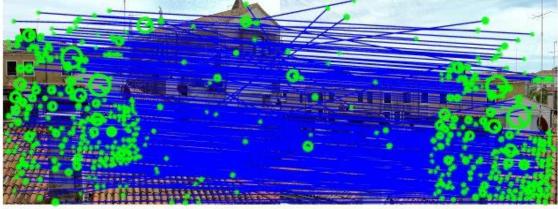
Lots of code available

E.g., https://www.vlfeat.org/overview/sift.html

SIFT Matching Example

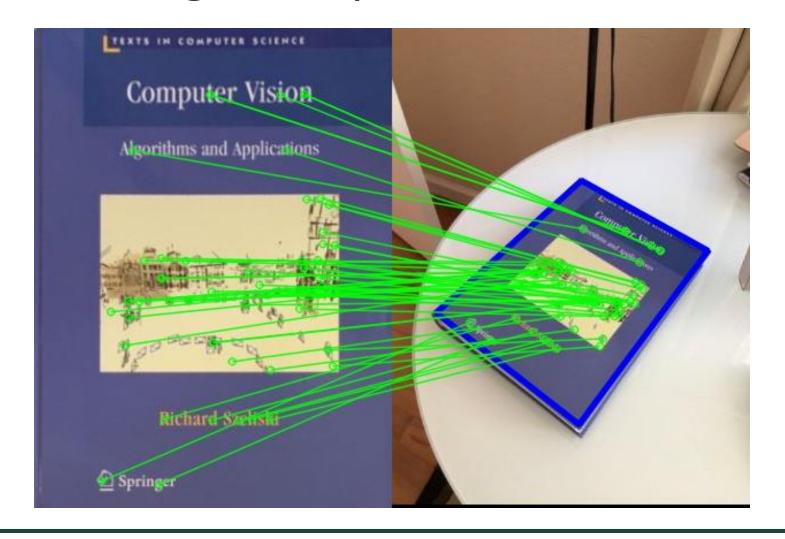






https://www.vlfeat.org/overview/sift.html

SIFT Matching Example



Further Reading

Section 7.1, Computer Vision, Richard Szeliski

David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004

ORB: An efficient alternative to SIFT or SURF. Rublee et al., ICCV, 2011